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In this paper, we demonstrate the efficiency of simulations via direct computation of the partition function
under various macroscopic conditions, such as different temperatures or volumes. The method can compute
partition functions by flattening histograms, through, for example, the Wang-Landau recursive scheme, outside
the energy space. This method offers a more general and flexible framework for handling various types of
ensembles, especially ones in which computation of the density of states is not convenient. It can be easily
scaled to large systems, and it is flexible in incorporating Monte Carlo cluster algorithms or molecular dynam-
ics. High efficiency is shown in simulating large Ising models, in finding ground states of simple protein
models, and in studying the liquid-vapor phase transition of a simple fluid. The method is very simple to
implement and we expect it to be efficient in studying complex systems with rugged energy landscapes, e.g.,
biological macromolecules.
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In recent years, methods for Monte Carlo �MC� simula-
tion have been dramatically improved over the traditional
Metropolis algorithm �1�. A large class of MC methods are
those based on the flat energy histogram, such as the multi-
canonical ensemble method �2�, the entropic sampling
method �3�, the density of states �DOS� method �4�, and the
statistical temperature method �5�. In this study, we demon-
strate the efficiency of an alternative sampling method,
which simultaneously and directly computes the partition
function at various values of a certain macroscopic variable,
e.g., T or V. Since one does not know the partition function
in advance, the partition function at different values of a
chosen variable is initially set to unity and continuously
modified throughout the simulation until convergence.

We first demonstrate the case of sampling based on a
number of discrete values of temperature. In this case, a
number of sampling temperatures are set over the tempera-
ture range of interest. Similar to the expanded ensemble
method or the simulated tempering method �6�, two types of
MC moves are used: an energy move under a fixed tempera-
ture and a temperature move under a fixed energy. Before
each MC step, a fixed probability is used to determine which
type of move the system takes. For the energy move, the
Metropolis algorithm is performed at the present �reciprocal�
temperature �. For the temperature move, another tempera-
ture �� is randomly chosen, and the following acceptance
probability is used to accept the move:

Acc�� → ��� = min�1,
exp�− ��E�/Z̃��

exp�− �E�/Z̃�

� . �1�

Here E is the present energy; Z̃� and Z̃�� are the values of the
estimated partition function at temperatures � and ��, re-
spectively. The partition function is “estimated” because it is

unknown in advance. After each MC step, the estimated par-
tition function at the present temperature is multiplied by a
factor f �1 �4�. This can be written as,

ln Z̃� → ln Z̃� + ln f . �2�

Similar to the WL algorithm, it is shown that by repeating
the above procedure for a fixed f , the estimated partition
function can eventually converge within certain fluctuations
proportional to �ln f �7,8�. Moreover, due to the frequently
modified acceptance probability, the additional errors in the
estimated partition function �due to violation of the detailed
balance condition� are larger in a stage with a larger ln f .
Therefore, the value of ln f should be gradually decreased to
improve the accuracy of the estimated partition function. In
practice, the whole simulation is separated into several
stages, each marked by a different value of ln f �4�. In pass-
ing from one stage to the next, ln f is modified to �ln f� /n
�4�. We use n=�10 in this study so that ln f is decreased by
an order of magnitude every two stages �the procedure for
optimizing the ln f of each intermediate stage will be given
in a forthcoming presentation �8��. At the end of the simula-
tion, ln f is reduced to a tiny number such that violation of
the detailed balance condition is negligible. For each f stage,
if the simulation runs for sufficient number of steps, each
temperature receives on average an equal number of visits,
i.e., a flat temperature histogram is achieved. Here the term
“temperature histogram” refers to the number of visits to
each discrete temperature instead of to a temperature inter-
val. The simulation is allowed to enter the next f stage when
the histogram fluctuation falls below a cutoff percentage �4�.

An alternative approach is to fix the number of simulation
steps by C /�ln f for an f stage. It can be shown that the two
approaches are equivalent for sufficiently long simulations
�8�. The constant C can be estimated from a few initial f
stages. The second approach ensures a better convergence for
a stage with a smaller ln f .

In principle, any set of sampling temperatures of interest*jpma@bcm.tmc.edu
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can be used. However, two consecutive temperatures must be
close enough to allow sufficiently frequent temperature tran-
sitions. This requires a certain overlap between the energy
distributions of two neighboring temperatures. This condi-
tion can be expressed as �T��	�E2
 /CV�T /�CV, where
CV and �	�E2
 are the heat capacity and energy fluctuation
at temperature T, respectively. Therefore, the number of sam-
pling temperatures is roughly proportional to �N �except
around the critical region�, where N is the system size. This
feature is advantageous for larger systems, which is also a
merit of the parallel tempering method �9�, but the latter does
not deliver the partition function quickly.

The algorithm was first tested on the 256�256 square

lattice Ising model. A wide temperature range, T� �0,8�,
was simulated in a single simulation. Since the sampling
temperature increment of an efficient simulation should be
inversely related to the heat capacity as discussed above
�nonuniform temperature setup is known to be advantageous
�10��, for this large system, sampling temperatures were dis-
tributed based on the roughly estimated heat capacity �e.g.,
that from simulation of a smaller system�. Accordingly, the
entire temperature range was partitioned into 13 subranges.
Sampling temperatures were linearly distributed inside each
subrange with a different increment. The temperature sub-
ranges and their increments were �0.1, 1.0�0.1�, �1.0,
1.8�0.04�, �1.8, 2.0�0.02�, �2.0, 2.2�0.005�, �2.2, 2.25�0.0025�,
�2.25, 2.3�0.002�, �2.3, 2.35�0.005�, �2.35, 2.5�0.01�, �2.5,
2.7�0.02�, �2.7, 3.6�0.05�, �3.6, 5.0�0.07�, �5.0, 6.0�0.1�, and
�6.0, 8.0�0.2�. Here the notation for each subrange is �begin-
ning temperature, ending temperature � increment�. In total,
there were 218 sampling temperatures. Each time the prob-
ability of choosing temperature over energy moves was 0.1%
�this number should be larger for smaller systems�. The
modification factor ln f was decreased from 1.0 to 10−9, the
number of MC steps for stage f was 100/�ln f sweeps, so the
whole simulation took 7.2�106 sweeps. Thermodynamic
quantities at temperatures other than the sampled tempera-
tures can be calculated using the multiple histogram method
�11�. Histograms from the last f stage were used. The exact
results of the Ising model were also calculated using the
method by Ferdinand and Fisher �12�. The relative errors of
the partition function, energy, entropy, and heat capacity
were no larger than 0.000 64%, 0.071%, 1.1%, and 3.9%,
respectively. Figure 1 shows the results for the partition func-
tion and heat capacity. For comparison, the WL algorithm
was applied to the same system using 15 independent simu-
lations, and the maximum relative errors of the free energy,
energy, entropy, and heat capacity were 0.0008%, 0.09%,
1.2%, and 4.5%, respectively �4�. The simulation cost of the
WL algorithm was 6.1�106 sweeps �4�. However, the ac-
ceptance probabilities for energy moves can be precalculated
to avoid expensive exponential computation in our case. The
above simulation was finished in 10 h on a single Intel Xeon
processor �2.8 GHz�.

Next, we introduce a variation of the above algorithm that
tries to find the transition temperature automatically and to
spend more effort sampling around that. This feature is de-
sirable if the transition temperature is not roughly estimated
in advance. This can be achieved by using a modified updat-
ing scheme, to let the system visit each temperature with a
different frequency ��. In the acceptance probability Eq. �1�,
the values Z̃� and Z̃�� of the estimated partition function are

replaced by Z̃� /�� and Z̃�� /���, respectively, whereas the up-

dating scheme Eq. �2� is changed to ln Z̃�→ ln Z̃�+ln f /��.
The temperature histogram is constructed in such a way that
the total number of visits to a particular temperature � is now
divided by its associated frequency ��. To focus sampling
around the transition temperature, the frequency �� can be
specified as an increasing function of the heat capacity. Since
the values of the heat capacity are unknown in advance, they
are updated at the end of each f stage and are used in the
next stage. The modified algorithm was tested on the same

TABLE I. Results for L�L Ising models using the Swendsen-
Wang cluster algorithm �14� as the energy move. Maximum relative
errors were calculated by assuming the errors at the left boundary to
be zeros. Here, T− and T+ define the temperature window, and �T
defines the increment.

L �T− ,T+ ��T� MC steps ��ln Z� ��CV�

64 �2.0,2.9 �0.1� 0.7�106 4.0�10−6 1.6%

128 �2.1,2.6 �0.05� 2.0�106 1.2�10−6 1.1%

256 �2.2,2.42 �0.02� 2.9�106 3.6�10−7 1.4%

512 �2.2,2.34 �0.01� 3.1�106 1.0�10−7 1.0%

1024 �2.24,2.30 �0.005� 3.1�106 6.9�10−8 1.4%

FIG. 1. Results for the 256�256 Ising model. �a� shows the
partition function as a function of temperature. The curve is shown
for ln Z per spin with the contribution of the two ground states
subtracted. �b� shows the heat capacity per spin as a function of
temperature. The relative errors are shown in the insets for both
panels.
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256�256 Ising system. The frequency �� at temperature �
was set as the square of the heat capacity per spin. Sampling
temperatures were uniformly distributed over the whole
range T� �0,8�, with a fixed increment �T=0.002. The
probability of choosing temperature over energy moves was
raised to 10%. The value of ln f was lowered from 1.0 to
�10�10−9. The simulation was kept running at each f stage
until the temperature histogram fluctuation was lowered be-
low 50%. The last stage was purposely extended to 5.0
�106 MC sweeps to accumulate more statistical data. To-
tally, 9.8�106 sweeps were used. The relative errors of the
free energy, the energy, and the heat capacity were no larger
than 0.000 45%, 0.055%, and 4.0%, respectively.

It is also possible to realize rejection-free, and hence more
efficient, temperature transitions. First, the relative probabil-

ity at each temperature �i, Pi=exp�−�iE� / Z̃�i
, is calculated

for the present energy E. Next, the accumulated probability
for each temperature, Qi=� j�iPj /� jPj, is also calculated, to
form a series of brackets, �Qi−1 ,Qi�, i=1,2 , . . ., with Q0=0.
If a uniform random number r� �0,1� falls in the ith bracket,

�i will be chosen as the next temperature. This type of tem-
perature move is analogous to the heat bath algorithm for
energy moves �13�. It is relatively expensive because of the
many exponential calculations. However, this expense is
negligible if a more expensive non-Metropolis algorithm is
used for the energy move. As an example, the Swendsen-
Wang cluster algorithm �14� was used as the energy move on
large two-dimensional Ising models. To improve the effi-
ciency, the energy and temperature moves were merged in
such a way that each energy move was immediately followed
by a rejection-free temperature move. Simulations were per-
formed on critical temperature windows estimated by �T
−Tc��L−	. Here 	=1 is the critical exponent, and Tc is the
critical temperature. About 10–20 sampling temperatures
were distributed in each window. Parameters and results are
listed in Table I. The efficiency is clear in terms of the num-
ber of simulation steps required to reach the desired accu-
racy.

Molecular dynamics �MD� can be used as an energy move
as well. In this case, the probability of taking temperature
over energy moves is 50%. Constant-temperature MD �a

FIG. 2. Lowest-energy configurations of AB proteins �black, A; white, B�. �a� 2D, 55mer, model I. �b� 3D, 55mer, model I. �c� 3D, 34mer,
model II. �d� 3D, 55mer, model II.
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length-5 Nosé-Hoover chain �15� with force scaling �16�� is
used as a �potential-�energy move �5�. The thermostat tem-
perature T0 was set to be 0.5. The simulations were used to
find ground states of AB protein models �17�. We were able
to find all known ground states �5,18–20�, and several new
ones with lower energies. Table II lists the new ground-state
energies, and Fig. 2 shows the corresponding configurations.
Comparing our results �for model I �17�� with those from the
statistical temperature method �5�, the new ground state of
the two-dimensional �2D� 55mer, Fig. 2�a�, has a different
topology in the two inner strands; the new ground state of the
three-dimensional �3D� 55mer, Fig. 2�c�, has a more compact
configuration. In both cases, our ground states have black-
black clusters �strong attractions� that are more favorably
packed with no exposed black beads.

The WL-type algorithms have also been applied to
Lennard-Jones simple liquid systems �21�, for computing the
multidimensional DOS. Here, we demonstrate that the simu-
lation can be carried out using volume, instead of tempera-
ture, as the sampling variable, where the temperature and
particle number are held constant. Each volume move can be
implemented as a change of the scale of the system. There-
fore, it is convenient to adopt reduced coordinates s=r /�3V.
The partition function is factorized to the ideal gas part, Zig,
and a potential part, ZV, i.e., Z=ZigZV, where ZV

�1/VN��drN exp�−�U�rN��=�dsN exp�−�U�sN ;V��. Thus,
we can dynamically compute the potential part of the parti-
tion function ZV, instead of Z, in the acceptance probability
Eq. �1�. This method was used to study the liquid-vapor tran-
sition of a 108-particle Lennard-Jones system with half-box
truncation and periodic boundary conditions. After the simu-
lation, the Helmholtz free energy can be obtained through
F=Fig−ln ZV /�, and the Gibbs free energy profile under
pressure p can be derived through G=F+ pV, at each sam-
pling volume �or density�. For each simulation under a fixed
temperature, the transition pressure was first determined by
equalizing the two minima on the Gibbs free energy curve;
the values of liquid density 
+ and vapor density 
− were also
determined correspondingly. Simulations were performed
under different temperatures T� �0.85,1.20�, with increment
�T=0.01. To accurately determine the position of coexist-
ence densities, the sampling density increments �
 were
0.002 and 0.0005 around the roughly estimated liquid and
vapor coexistence densities, respectively, whereas the transi-
tion region was filled with a larger increment �
=0.005.
Typically, about 300 volume sampling points were used in a
single simulation. The computed vapor-liquid coexistence
curve is shown in Fig. 3. The relation 
±−
c�a �Tc

−T�±b�Tc−T�� �the critical exponent �=0.3258 �22�� was
used to extrapolate the critical temperature Tc and the critical
density 
c based on the corresponding power-law regions.
The estimated critical temperature Tc and critical density 
c
were 1.304 and 0.315, respectively. The results for this small
system are consistent with those of the infinite system �e.g.,
Tc=1.3123 and 
c=0.3174 �23��.

In summary, we have demonstrated the efficiency of
simulations via direct computation of the partition function.
The method has a range of advantages. An important one is
in the ground-state-oriented applications, such as in the pro-
tein folding problem, in which case the WL algorithm suffers
from lack of efficient sampling around the ground state. This
is because the location of the ground state, and hence the
proper energy range over which the sampling should be per-
formed, is not known in advance. The efficiency of the WL
algorithm will be further reduced if the energy landscape in
the last energy bin �near the ground state� is continuous and
rugged �24�. By contrast, sampling in the temperature space
does not require a priori information about the ground state
and can sample the vicinity of the ground state with desired
accuracy.

Our method can be viewed as a generalization of the
original DOS-based WL algorithm �4� since the DOS is in-
deed the partition function of the microcanonical ensemble.
In the case of canonical versus microcanonical ensembles,
for example, the partition functions are related by an expres-
sion Z�N ,V ,T�=�0

�g�N ,V ,E�exp�−�E�dE where Z�N ,V ,T�
is the canonical partition function and g�N ,V ,E� is the den-
sity of states or microcanonical partition function. It is easy

TABLE II. Lowest energies of AB proteins with Fibonacci sequences. Results were compared with those
from the annealing contour Monte Carlo �ACMC� �18�, the energy landscape paving �ELP� �19�, the confor-
mational space annealing �CSA� �20�, and the statistical temperature molecular dynamics �STMD� �5�.

Protein ACMC ELP CSA STMD This work

2D, 55mer, model I −18.7407 −18.9110 −18.9202 −19.2570

3D, 55mer, model I −42.438 −42.3418 −42.5789 −44.8765

3D, 34mer, model II −94.0431 −92.746 −97.7321 −98.3571

3D, 55mer, model II −154.5050 −172.696 −173.9803 −178.1339

0.9
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Simulation
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Critical point

FIG. 3. Phase diagram for the 108-particle Lennard-Jones sys-
tem. The empty circles are results of simulations, the solid line is
from power-law fitting, and the solid circle represents the estimated
critical point for this small system.
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to see that, in the canonical ensemble, one can fix any pair of
thermodynamic parameters and change the third one for
sampling, while in the microcanonical ensemble, it is hard to
do so, e.g., one cannot fix N and E to change V. This indi-
cates that there are inherent advantages in performing simu-
lations �such as flattening the histogram� outside the energy

space. We thus expect that the general framework to be more
flexible in handling other types of ensembles, especially the
ones in which computation of the DOS is not convenient.
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